
Team
Andromeda

Technological Feasibility
Assessment

November 8, 2019

Clients - Dr. Audrey Thirouin and Dr. Will Grundy
Mentor - Isaac Shaffer
Members - Matthew Amato-Yarbrough, Batai Finley, Bradley Kukuk, John
Jacobelli and Jessica Smith

 Table of Contents

1. Introduction 4

2. Technical Challenges 6

3. Technology Analysis 7
3.1 Triaxial Ellipsoids versus GPU 7
3.2 Hamiltonian Monte Carlo (HMC) API 17
3.3 Hamiltonian Monte Carlo (HMC) API Command Line Interface (CLI) 26
3.4 Graphical User Interface 33
3.5 Video Generator 39

4. Technology Integration 43

5. Conclusion 44

1. Introduction

We are Team Andromeda and our project is the Three-Dimensional Simulation
and Visualization of Binary Asteroids. Our clients, Dr. Will Grundy and Dr.
Audrey Thirouin, are astronomers at Lowell Observatory that research the
Kuiper Belt and binary asteroids. The Kuiper belt is a region of the solar system
beyond the orbit of Neptune which contains many comets, asteroids, and other
small bodies made largely of ice. Many of the Kuiper belt residents are artifacts
of the universe’s beginning and there is much to be learned from them. For
example, binary objects are a frequent occurrence in the belt. Binary asteroids
are a system of two asteroids that are within the orbit of each other. The
formation of these systems have only been explained in theories so far . 1

When our clients observe binary asteroids, they can only gather information
about an object’s brightness due to the distance it is observed at. The
astronomers can use this brightness to generate a light curve. A light curve is a
graph representing the intensity of light reflected from a celestial object over
time. The best way for our clients to infer information about the object is by
using lightcurves.

1.1 Purpose

Understanding how the universe around us functions is vital to space
exploration, and objects in the Kuiper Belt give us insight into early formations
of the solar system. Our clients use light curve graphs when they compare the
generated light curve with observed data. By observing these light curves, they
can begin to hypothesize how these objects work. They need a sophisticated way
to model these objects, as well as a way to find a light curve model with similar
parameters to observed systems.

1 https://en.wikipedia.org/wiki/Binary_asteroid

1

https://en.wikipedia.org/wiki/Binary_asteroid

1.2 Problem
We have been tasked by Dr. Will Grundy and Dr. Audrey Thirouin at Lowell
Observatory to develop several new modules that would improve or add
functionality to their solutions infrastructure. These modules would work
towards solving the following issues.

● The implementation used to produce simulated light curves now requires
the user to manually enter over fifty parameters into an IDL command
line. This is an arduous and time-consuming process due to IDL running
slow for our clients.

● The solution currently being used is limited by the efficiency at which it
can render shapes. Thus, a means to improve the efficiency of the light
curves produced by the forward model is necessary.

● Currently, the implemented solution has the ability to produce light
curves that are similar to those found in observed data. However, our
clients need these produced light curves to be more accurate than they are
now. Therefore, a way to filter out data that is reducing the accuracy of
produced light curves is needed.

1.3 Solution
We have decided to implement a set of modules that build upon the existing
solution. The modules we plan to implement will focus on solving the
aforementioned problems.

● We will develop a GUI that will support user input for the parameters used
by the forward model. This GUI will also display rendered movies from
images produced by the model.

● A new shape subclass will be implemented to allow for the modeling of
triaxial ellipsoids.

● Lastly, a Hamiltonian MCMC wrapper for the forward model will be added
to provide parameter estimates for light curves similar to those found in
observed data.

2

2. Technical Challenges

2.1 Triaxial Ellipsoids versus GPU
Implementing a triaxial ellipsoid shape to the list of renderable objects, as well
as optimizing the GPU so that all objects can render faster are two of our main
goals for this project. We believe that we would have enough time to implement
one of the above goals, but not the other. Since there are many facets to both
implementations, we will break them down by reviewing the features necessary
for their implementation.

2.2 Hamiltonian Monte Carlo (HMC) Algorithm
To improve the efficiency of our clients’ or users’ workflow, we need to
implement a Hamiltonian MCMC algorithm using a pre-existing API that
includes HMC specific functions. The most important thing we will have to
consider is how the API is implemented. This way, we can use the algorithm
effectively so that it can produce “best fitting” parameters that can be used to
create light curves similar to the observed light curves. We will examine the
workflow necessary to use the algorithm, along with how effectively an HMC
algorithm can be integrated using an API.

2.3 Hamiltonian Monte Carlo (HMC) API Command Line
Interface (CLI)
Multiple considerations need to be made when choosing the right package or
framework that will serve as the interface for the HMC API. The most important
of these considerations is whether our clients require a simple or advanced
interface for use with the HMC API.

2.4 GUI Framework
The implementation of a new GUI framework needs to be designed in a way that
allows efficient parameter manipulation and responsive displays of data. There
are several different programming languages that can be used to achieve these
goals, which will be analyzed in the sections below.

3

2.5 Video Generator
Our project needs to have the capability to take a series of rendered images of a
modeled system and compile them into movie viewable through the GUI. The
movie should be made after all the images for a given system have been
generated.

3. Technology Analysis
3.1 Triaxial Ellipsoids versus GPU
3.1.1 Introduction to Triaxial Ellipsoids and GPU
Two important features that our clients are interested in implementing are the
modeling of triaxial ellipsoids and the addition of GPU parallelization to the ray
tracer of the forward model. These features would improve existing components
of the program. Rendering triaxial ellipsoids would require further development
of the sphere object in the program, while implementing GPU parallelization
would require modifications to the ray tracer of the software.

Our main concern is the feasibility of being able to implement both of these
within the given timeframe of the project. Ultimately, we believe that we only
have time to work towards one of these goals. The sections hereafter breakdown
and analyze the feasibility of implementing these features, and which one we
feel would benefit our clients the most. After reviewing the practicality of both
components, we will discuss which one we think should be considered for the
program.

3.1.2 Factors
Our main factors when considering the implementation of triaxial ellipsoids and
GPU APIs are compatibility, processing speed, and familiarity. The factors are
presented in order of most importance to least importance.

4

Compatibility
Compatibility is important because we want to focus our time working with
technology that is already compatible with the program we have. This way we
can spend more time working on the project, and less time worrying about how
the given improvement will integrate with the program. Compatibility will be
measured by seeing whether integration is possible with the current program,
and whether doing so would be difficult.

Processing Speed
Processing speed plays a large role in our choice, as our clients wish to have the
program run as fast as possible. For the model, our clients will be switching
between speed and accuracy as needed. Since our implementation of triaxial
ellipsoids can give our clients a slightly more advanced model than a sphere, it is
vital to maintain an optimal render time. Because our clients want the model to
render as fast as possible, optimizing GPU speed is integral as well. The speed
analysis of the triaxial ellipsoid implementation and the GPU APIs will be
measured by comparing render speeds in separate technology groups. For
example, triaxial ellipsoids’ render speed will not be compared to a GPU API, but
rather another render shape option such as a sphere.

Familiarity
Familiarity will play a deciding factor in which implementation we choose as
well. The team feels that it is better to choose an approach that we are more
familiar with so that less time is spent learning. We wish to try to dedicate a
majority of our time to implementing these improvements to their fullest. To
measure this factor, each candidate will have a table with how familiar the team
members are with said candidate. The team will rate their familiarity on a scale
from 0-5, and an average will be given at the bottom of the table.

5

3.1.3 Introduction to GPU
In the current implementation of the project, the software is parallelized for the
CPU at two levels. The first is at the observation level and the ray level (where ray
tracing occurs). While CPU parallelization does improve the performance of the
software at the observation level, it is far less efficient at the ray level. This is
where the application for GPU parallelization is valuable, as it would improve
the performance of the ray tracer. Consequently, this would greatly cut down on
the individual times needed to render and return the results of each observation
that would otherwise add up very quickly across thousands of simulations using
different sets of parameters.

There are two options we will explore while looking into the GPU problem. CUDA
and OpenCL are both used for parallel processing, but the two platforms have
some distinct performance differences. By comparing compatibility, processing
speed, and familiarity, we will decipher whether optimizing the GPU is feasible
within our time constraint.

3.1.4 CUDA
Introduction
CUDA is a NVIDIA owned and operated parallel processing framework. Since
CUDA is propriety, it has full support of NVIDIA Corporation and therefore is
well optimized. The CUDA framework is only able to work with NVIDIA graphics
cards, which is limiting considering what GPU our client may have.

Analysis Methods
In order to accurately capture the metrics used to compare our candidates,
CUDA was analyzed using the following methods for each factor:

● Compatibility : To judge if CUDA is compatible with our clients’ GPU.
● Processing Speed: To gain an accurate representation of how well each

CUDA performs, we refer to a study demonstrating the processing speed
of CUDA when processing thousands of photons.

● Familiarity : For a smooth workflow, our project would benefit from our
team’s current framework knowledge. Our team will rank (0-5) our
familiarity with CUDA.

6

Analysis Results
Compatibility
CUDA is proprietary and therefore is restrained to NVIDIA GPUs. NVIDIA offers a
full range of support. In the case that our client has anything other than an
NVIDIA GPU, CUDA would not be an applicable framework to use.

Processing Speed
A study involving Monte Carlo photon transport simulation showcased CUDA
performance in a relatable way to our project. The three-dimensional simulation
ran up to 40,000 photons per millisecond to test CUDA on NVIDIA cards. On the
GTX 1080Ti, CUDA rendered about 32,000 photons per millisecond. Other, lower
performance cards such as the GTX 1080, GTX 980 Ti, TITAN X, GTX 590, CUDA
was still able to render high levels of photons per second. However, the GTX
1050Ti card gave an average photon render time . 2

Figure 1: The top right graph shows the photons rendered per millisecond2

Familiarity
Our group has no experience working directly with CUDA. We have extensively
researched its API however and discovered that it is a C-like framework. Our
average familiarity levels out to 0.4 on a zero to five scale with five people.

2https://www.spiedigitallibrary.org/journals/journal-of-biomedical-optics/volume-23/issue-01/
010504/Scalable-and-massively-parallel-Monte-Carlo-photon-transport-simulations-for/10.1117
/1.JBO.23.1.010504.full?SSO=1

7

https://www.spiedigitallibrary.org/journals/journal-of-biomedical-optics/volume-23/issue-01/010504/Scalable-and-massively-parallel-Monte-Carlo-photon-transport-simulations-for/10.1117/1.JBO.23.1.010504.full?SSO=1
https://www.spiedigitallibrary.org/journals/journal-of-biomedical-optics/volume-23/issue-01/010504/Scalable-and-massively-parallel-Monte-Carlo-photon-transport-simulations-for/10.1117/1.JBO.23.1.010504.full?SSO=1
https://www.spiedigitallibrary.org/journals/journal-of-biomedical-optics/volume-23/issue-01/010504/Scalable-and-massively-parallel-Monte-Carlo-photon-transport-simulations-for/10.1117/1.JBO.23.1.010504.full?SSO=1

Familiarity with CUDA

Team member Familiarity (0-5)

Batai Finley 1

Bradley Kukuk 0

Matthew Amato-Yarbrough 0

Jessica Smith 1

John Jacobelli 0

Average : 0.4

Table 1: Our team’s current familiarity with GPU APIs

3.1.5 OpenCL
Introduction
OpenCL is a framework that facilitates parallel processing across heterogeneous
systems, which are systems that use more than one kind of processor.
Furthermore, OpenCL is not restricted to one vendors brand of processors which
allows for it to be compatible with a wider range of CPUs and GPUs. Additionally,
OpenCL is an open source platform facilitating community support and
optimization across a variety of different processors.

Analysis Methods
In order to accurately capture the metrics used to compare our candidates, GPU
APIs were analyzed using the following methods for each factor:

● Compatibility : To judge if OpenCL is compatible with our clients’ GPU.
● Processing Speed: To gain an accurate representation of how well each

OpenCL performs, we refer to a study demonstrating the processing speed
of OpenCL when processing thousands of photons.

● Familiarity : For a smooth workflow, our project would benefit from our
team’s current framework knowledge. Our team will rank (0-5) our
familiarity with OpenCL.

8

Analysis Results
Compatibility
As noted previously, OpenCL is an open source framework and as a result is
supported on a multitude of GPUs and CPUs. Therefore, implementing OpenCL
into our project will not be an issue as our clients brand of hardware will be
supported.

Processing Speed
In the same study examining Monte Carlo photon transport simulations,
OpenCL’s performance was measured as well. Under OpenCL, the simulation ran
up to 10,000 photons per millisecond when testing on the GTX 1080 Ti. The GTX
1080, 980 Ti, Titan X and 1050 Ti performed worse with the 980 Ti coming closest
to the 1080 Ti at around 9000 photons per millisecond2.

Familiarity
Our team has no experience with OpenCL aside from what we have gathered in
our research on the framework. However, we have come to learn that OpenCL
can be called from programs written in C and C++.

Familiarity with OpenCL

Team member Familiarity (0-5)

Batai Finley 1

Bradley Kukuk 0

Matthew Amato-Yarbrough 0

Jessica Smith 1

John Jacobelli 0

Average : 0.4

Table 2: Our team’s current familiarity with GPU APIs

9

3.1.6 Triaxial Ellipsoids
Introduction
Triaxial ellipsoids are spheres that have been deformed on 3 different axises,
meaning they may look similar to a hamburger or potato. Our clients would like
to have a feature that can model triaxial ellipsoids. This feature will allow them
to attain a more accurate representation of different objects that exist in the
Kuiper Belt.

We spoke with Brian Donnelly, a member of the team working on the project last
year, about the features created previously. Brian stated that spheres and
faceted shapes had been implemented. Faceted objects are objects rendered
using many different shapes in order to create the model. Brain also mentioned
that spheres have a run time of 1-2 seconds while faceted objects run for 20-35
seconds. While providing a more realistic object, faceted rendering is much
slower than rendering a single shape.

Brian added that his team had started working on implementing triaxial
ellipsoid rendering, but did not finish adding it to their program. He touched on
the issues that they had run into, which mainly involved the rotation of these
objects. Brian talked about the problem being a minor one that would only take a
few weeks to solve, but stated that his team had been on a time crunch and could
not include the feature. Brain explained that triaxial ellipsoids can be modeled
using a single shape similar to a sphere. The ability to model these triaxial
ellipsoids would greatly improve the accuracy of modeling binary systems while
retaining the run time of a sphere.

Analysis Methods
In order to accurately capture the metrics used to compare our candidates,
triaxial ellipsoids were analyzed using the following methods for each factor:

● Compatibility : Evaluate whether the methods used to implement triaxial
ellipsoids are compatible with the current API.

● Processing Speed: Talk to Brian Donnelly, an expert on the program, and
gain his opinion on how fast triaxial ellipsoids can be run in comparison to
currently implemented shapes.

● Familiarity : Our team will rank (0-5) how familiar they are with the
codebase, as the triaxial ellipsoid will be made using an extension of a
currently implemented module.

10

Analysis Results
Compatibility
Compatibility should not be an issue for implementing triaxial ellipsoids since
the module for using triaxial ellipsoids would be an extension of the sphere
module. This module was written in C++, meaning that the triaxial ellipsoid
would also be implemented in C++. As the triaxial ellipsoid module would not be
from an outside library or source, compatibility would not be a concern. The
module that will be written for the triaxial ellipsoids will already be in C++ and
therefore be naturally compatible.

Processing Speed
Speed efficiency is important for our clients because they will be generating
thousands of these models in order to try and match an observed light curve.
Waiting twenty times longer for an object to run would inhibit the efficiency at
which our clients could check light curves. This is important to our clients
because they would like to be able to choose between a faster run time or a more
accurate model. The triaxial ellipsoid object, like spheres, would assist in keeping
run times low while faceted objects would be used for more accurate models. The
impact of the render speeds over time can be seen better in Table 3 and Figure 2
below.

Object Render Speed

Shape Time (seconds)

Sphere ~1-2

Triaxial Ellipsoids ~1-2 (projected)

Faceted Shapes ~20-35

Table 3: Render speed of objects using different shapes

11

Figure 2: Number of objects rendered for an hour using triaxial ellipsoids vs faceted objects

Familiarity
Our team has begun to review the code and started to understand the inner
workings of the program. We’ve also gone over detailed explanations of how the
modules interact with each other in order to get a better understanding of the
API we are working with. While we are not experts, we are somewhat familiar
with the codebase we will be working from. The team’s familiarity with the
program is seen in Table 4 below.

12

Familiarity with Program

Team member Familiarity (0-5)

Batai Finley 2

Bradley Kukuk 3

Matthew Amato-Yarbrough 2

Jessica Smith 2

John Jacobelli 2

Average : 2.2

Table 4: Our team’s current familiarity with our clients’ program

3.1.7 Summary
Overall, we believe that the triaxial ellipsoid feature would be much more
feasible. Brian is currently researching CUDA at the graduate level and advised
that it would take a full-time person who is familiar with GPU APIs around 2 to 3
years to implement the problem we are facing. With this advice and with our
lack of GPU API knowledge, GPU optimization does not have a feasible
implementation time frame.

Triaxial ellipsoids benefit our client and allow them to have a more accurate
model to simulate without costing them render time. This shape can also be
implemented within a reasonable time frame. Since the module for the triaxial
ellipsoid object would be an extension of the sphere module, it would also be
compatible with the current API.

The table below overviews our candidates and compares them with our analysis
methods. Due to these factors outlined in Table 5, we believe that adding triaxial
ellipsoids into the existing API would be feasible and extremely useful for our
clients/users.

13

Candidate Feasibility

Candidate Compatibility Processing Speed Familiarity
(Average)

Triaxial Ellipsoids High High Medium (2.2)

CUDA Low High Low (0.4)

OpenCL High Low Low (0.4)

Table 5: Feasibility of each candidate and how they compare to each other

3.2 Hamiltonian Monte Carlo (HMC) API
3.2.1 Introduction to Hamiltonian Monte Carlo API
In an effort to increase the efficiency of our clients’ or users’ workflow, we aim
to incorporate a Markov Chain Monte Carlo (MCMC) algorithm into our project.
More specifically, we will be working with a variant of MCMC algorithms called
the Hamiltonian Monte Carlo (HMC) algorithm. With the inclusion of this
algorithm, our clients/users will be able to obtain likely parameters for observed
binary systems that can then be used in conjunction with the forward model.

Below is a workflow illustrating how the HMC algorithm will be used in order to
create light curves with increased accuracy.

Figure 3: Workflow involved with using the HMC algorithm

14

In order to satisfy this workflow, we will be using pre-existing APIs that include
HMC specific functions in order to create probabilistic models. These APIs
include Stan, an open-source probabilistic programming API written in C++, and
Pymc3, an open-source probabilistic programming API written in Python. Both
APIs support a wide range of probability modeling, including HMC. Furthermore,
both APIs work for continuous parameters while also offering methods of
masking continuous parameters as categorical in order to handle these types of
parameters within the API. For each API, an analysis will be done exploring key
factors that will determine each API’s feasibility within this project.

3.2.2 Factors
In order to be considered feasible, these APIs will need to satisfy four factors:
efficiency, familiarity, level of support offered, and compatibility. The factors
are presented in order of most importance to least importance.

Efficiency
The efficiency of the API is crucial in determining its feasibility; the chosen API
must be able to maintain a balance between speed and accuracy. When
measuring the efficiency of an algorithm based API, the size of the problem
being solved is an important factor to consider. The problem size encapsulates
factors such as the type of data being input, the number of parameters
incorporated in the problem, how the data is related, etc. However, constant
factors such as startup times and the speed in which computation is done are
also important factors to consider. When analyzing each candidate, an analysis
will be done considering the API’s method of computation. Specifically, this
factor will consider the optimization library used by the API.

15

Familiarity
In order for our team to be able to implement the chosen API, we must be
familiar with the programming language that the API is written in. This will
affect the difficulty and required time associated with implementing the API
into our project. For example, if our team is only somewhat familiar with the
language that the API uses, it will be more difficult and require more time to
write code using the libraries within the API. Conversely, if our team has a strong
familiarity with the language, it will be less difficult and will take less time
overall. The familiarity that our team has with the language that each API uses
will be determined by a rating of 0-5 from each teammate in regard to their
familiarity with the API’s programming language.

Level of Support Offered
The amount of resources that can be found on each API’s website is important in
determining the difficulty associated with using the API. These resources can be
in the format of tutorials, documentation, community support, examples, books
and videos. These resources will give us the references needed in order to utilize
the APIs, and more specifically, the HMC aspect of the APIs. The level of support
offered will be determined by examining whether these resources are readily
available on the API’s website.

While additional information can be found on websites other than the API’s
website (such as YouTube), this information will not be considered when
exploring this factor. This is due to the differing levels of accuracy associated
with information found outside the API’s website; differing API versions,
incorrect tutorials, etc. While this additional information could be considered
viable, it varies depending on the source of the information.

Compatibility
The API that we choose to work with for this section of the project will need to
call the forward model currently implemented in the codebase of the project. As
such, it is important that the programming languages of each API be compatible
with the languages currently used in the codebase of the project: C, C++, and IDL.
Moreover, the language for the projected GUI for the forward model will be
written Python, and as such, it will be important to consider this language as
well.

16

By ensuring compatibility with these languages, we will ensure that there will
not be any compatibility errors associated with using the API in conjunction
with the forward model. The level of compatibility between the API and the
languages used within the current and planned iteration of the project will be
examined by determining whether the language that the API is written in is
compatible with the aforementioned languages.

Additionally, each API will need to be able to run on all operating systems (OSs):
Linux, Mac, and Windows. This will ensure that the API can be utilized by our
clients/users, regardless of the OS they are running the API on. Compatibility
with these major platforms will be explored by determining whether the API can
or cannot be used with a specific OS.

3.2.3 Stan 3

Introduction
Stan is a modern, free and open-source API written in C++ and is used for
modeling and high-performance statistical computation. It is used by thousands
of users for statistical modeling, data analysis, and prediction within various
fields. It can be used with most data analysis languages such as R, Python, and
Matlab. Stan was initially released in August 2012, and the current stable version
of Stan is 2.21.0.

Analysis Methods
In order to accurately capture the metrics used to compare our candidates, Stan
was analyzed using the following methods for each factor:

● Efficiency : Examine the efficiency of Stan in regard to the optimization
library that it uses to construct models.

● Familiarity : Explore the familiarity that our team has with C++, since
Stan is written in this programming language.

● Level of Support Offered: Identify the available support on Stan’s website
that can be used to assist in using the API.

● Compatibility : Determine whether the programming language that Stan
is written in is compatible with the pre-existing and projected codebase.

3https://mc-stan.org/

17

https://mc-stan.org/

Analysis Results
Efficiency
Stan uses its own optimization library in order to solve mathematical
expressions. The optimization library can be configured to use either the
computer’s GPU or CPU. By utilizing the computer’s GPU over its CPU, the
mathematical calculations performed by Stan allows for superior processing
power. This is due to the multitude of GPU cores that can be used to handle
multiple functions at the same time, with less of a cost to the overall speed of
computation.

Familiarity
Stan is based on the programming language C++. While our team is familiar
with C++, our knowledge on the language is limited, as reflected by the metrics
in Table 6 below. This means that we can read and understand C++ source code,
but will need to spend a large amount of time referencing online C++ resources
in order to determine the correct syntax that would need to be used in order to
construct a stable C++ program.

Familiarity with C++

Team member Familiarity (0-5)

Batai Finley 1

Bradley Kukuk 1

Matthew Amato-Yarbrough 1

Jessica Smith 1

John Jacobelli 1

Average : 1

Table 6: Our team’s current familiarity with C++

18

Level of Support Offered
As with most well documented and actively maintained APIs, an extensive
amount of support can be found on Stan’s website, as noted below in Table 7.
Support in regard to how to get started using Stan, the math behind the
statistical models that can be created, and how to implement it into various
interfaces are just a few resources that are readily available.

Level of support offered

API Tutorials Documentation Community
Support

Examples Books +
Videos

Stan Yes Yes Yes Yes Yes

Table 7: Level of support offered on Stan’s website

Compatibility
Both the forward model of the project and Stan API are written in the same
programming language, C++, and as such are natively compatible. However, in
order for the API to be compatible with IDL and Python, a wrapper will need to be
used. Compatibility is demonstrated in Table 8 below. Entries with an asterisk
note that a wrapper will need to be used.

Compatibility with C, C++, IDL, and Python

API C C++ IDL Python

Stan Yes Yes Yes* Yes*

Table 8: Compatibility Stan has with languages used in codebase

19

3.2.4 Pymc3 4

Introduction
Pymc3 is a free and open-source API written in Python and is used for Bayesian
statistical modeling and probabilistic machine learning. Due to its flexibility and
extensibility, it is an applicable solution for a large variety of scientific fields
such as astronomy, chemistry and ecology. Due to its widespread use, Pymc3 has
amassed a large number of users. Pymc3 was initially released in May 2013, and
the current stable version of Pymc3 is 3.7.

Analysis Methods
In order to accurately capture the metrics used to compare our candidates,
Pymc3 was analyzed using the following methods for each factor:

● Efficiency : Examine the efficiency of Pymc3 in regard to the optimization
library that it uses to construct models.

● Familiarity : Explore the familiarity that our team has with Python, since
Pycm3 is written in this programming language.

● Level of Support Offered: Identify the available support on Pycm3’s
website that can be used to assist in using the API.

● Compatibility : Determine whether the programming language that Stan
is written in is compatible with the pre-existing and projected codebase.

Results
Efficiency
Pymc3 is built on top of a powerful optimization library called Theano , which 5

allows for the efficient computation of complex mathematical expressions.
Theano’s speed is derived from 2 important factors:

1. Use of the computer's GPU: data-intensive mathematical expressions are
computed using the computer’s GPU rather than its CPU.

2. Dynamic C code generation: evaluates mathematical expressions using
dynamic C code.

4http://deeplearning.net/software/theano/
5https://docs.pymc.io/

20

http://deeplearning.net/software/theano/
https://docs.pymc.io/

The benefits of utilizing the GPU for complex mathematical calculations are
explored in the efficiency results of the analysis results in Section 3.2.3. In short,
ability to use the GPU over the CPU allows for greater computation speed.
Furthermore, the use of dynamic C code within Theano allows for higher
performance standards than its static C code counterpart.

Familiarity
Pymc3 is based on the programming language C++. On average, our team is
between familiar and proficient with Python, as reflected by the metrics in Table
9 below. This means that we can read, understand and implement Python code
without needing to refer to online Python resources. However, we will need to
refer to online resources in order to implement complex functions within a
Python program.

Familiarity with Python

Team member Familiarity (0-5)

Batai Finley 2

Bradley Kukuk 4

Matthew Amato-Yarbrough 3

Jessica Smith 3

John Jacobelli 3

Average : 3

Table 9: Our team’s current familiarity with Python

Level of Support Offered
An ample amount of support can be found on Pymc3’s website, as noted below in
Table 10. An example of support on the website includes beginner tutorials,
documentation on implementing HMC model computation, and videos covering
examples of Pymc3 programs. Additionally, links to online books regarding
Bayseian data analysis can be found on the website, free of charge.

21

Level of support offered

API Tutorials Documentation Community
Support

Examples Books +
Videos

Pymc3 Yes Yes Yes Yes Yes

Table 10: Level of support offered on Pymc3’s website

Compatibility
Both the projected GUI for the forward model of the project and Pymc3 are
written in Python, and as such are natively compatible. However, in order for the
API to be compatible with C, C++ and IDL, a wrapper will need to be used.
Compatibility is demonstrated in Table 11 below. Entries with an asterisk note
that a wrapper will need to be used.

Compatibility with C, C++, IDL, and Python

API C C++ IDL Python

Pymc3 Yes* Yes* Yes* Yes

Table 11: Compatibility Pymc3 has with languages used in codebase

3.2.5 Summary
After performing an analysis of both the Stan and Pymc3 APIs, we concluded the
API that we are going to use to implement the HMC algorithm within the project
will be Pymc3. The efficiency, compatibility and level of support offered for Stan
and Pymc3 are similar, as shown in Table 12 below. Both APIs use highly
optimized libraries in order to solve mathematical expressions, and they are
both compatible with the current programming languages used by the existing
codebase. Moreover, both APIs provide an ample level of support on their
websites. As such, both are feasible options in terms of efficiency, compatibility
and level of support offered.

22

However, the familiarity that our team has with the programming language
used by Pymc3 makes it the more feasible candidate for this project. This metric
is compiled in Table 12 below. The use of Python as Pymc3’s programming
language means that it will be less difficult and more time efficient to be
implemented into the project by our team.

Candidate Feasibility

Candidate Efficiency Familiarity
(Average)

Level of Support
Offered

Compatibility

Stan High Low (1.0) High High

Pymc3 High Medium (3.0) High High

Table 12: Feasibility of each candidate and how they compare to each other

3.3 Hamiltonian Monte Carlo (HMC) API Command Line
Interface (CLI)
3.3.1 Introduction to Hamiltonian Monte Carlo API Command
Line Interface
In order to utilize the HMC API that we to plan implement into our project, a
Command Line Interface (CLI) package or framework must be considered. This
CLI package or framework will augment the HMC API and function as a way to
input parameters into the API using the command line. This will allow our
clients/users a way to interact with the HMC API in order to produce the data
they need, while also limiting the time needed in order to input data into the API.

In order to best fit our clients’ needs, this section of the document will provide
two solution candidates in the form of a package or a framework. In short, a
package will provide the support needed to make a simple but effective CLI for
inputting data. Conversely, a framework will provide the support needed to
make an advanced CLI at the cost of additional compilation time and overall
time to implement.

23

The CLI package and framework that meet these requirements and will be
explored in this section of the document are Click and Cement. Both Click and
Cement are Python based and they have been specifically created to help
programmers make CLIs. Each can be imported into Python projects and ran
within the code of the HMC API. An analysis will be conducted on both
candidates to ensure that the correct one is chosen for development within this
project.

3.3.2 Factors
For a CLI package or framework to be considered, it must satisfy three important
factors: usability, level of support offered, and longevity. The factors are
presented in order of most importance to least importance.

Usability
Since the CLI will act as the interface to the HMC API, it is important to consider
the ease of use that our clients or users will experience when interacting with
the interface produced. Although CLIs are limited in terms of possible use, there
are differing levels of customizability that can be achieved for them. As such, we
will need to examine the design limitations posed by each candidate in order to
determine the level of usability that can be achieved by each.

Level of Support Offered
The amount of documentation available on each candidate’s website will need to
be considered, as it is a factor in determining the difficulty that comes with
building the CLI. These resources can be in the format of documentation,
examples, and community support. The level of support offered will be
determined by examining whether these resources are readily available on the
candidate’s website. Moreover, similar to the level of support factor in Section
3.2.1, information found outside the candidate’s website will not be considered
when exploring this factor.

Longevity
Longevity of a program is important because of future integration and stability.
To ensure that the CLI implemented for this section of the project remains viable
in future iterations, it is important to examine the length of time that the
candidate has been available and how actively maintained its codebase is.

24

3.3.3 Click 6

Introduction
Click is a Python package for creating simple but effective command line
interfaces in a composable way with as little code as necessary. It’s highly
configurable but comes with sensible defaults out of the box. It is a commonly
used CLI package due to its simplicity and ease of implementing. Click was
initially released in May 2012, and the current stable version of Click is 7.1.

Analysis Methods
In order to accurately capture the metrics used to compare our candidates, Click
was analyzed using the following methods for each factor:

● Usability : Examine the design limitations of Click.
● Level of Support Offered: Identify the available support on Click’s website

that can be used to assist in building the CLI.
● Longevity : Identify the amount of time that Click has been available as a

package and how actively maintained its codebase is.

Results
Usability
The main selling point of Click is its simplicity in implementation, which makes
it exceptionally easy CLI to incorporate into any project. Fortunately, this
simplicity does not come at a great cost in terms of how much usability
customization it offers to its users. It offers functionalities such as the
validation of values, integration with the terminal (colors, progress bar, etc.),
and result callbacks. Overall, despite its limitations, Click offers solutions for
problems that require a CLI.

Level of Support Offered
The amount of support that can be found on Click’s website is limited to its
documentation and the examples within its documentation. However, despite
being limited in the varying options of support, as shown below in Table 13, the
level of coverage provided by the documentation is extensive. Information
regarding every aspect of Click’s functionality is included, as well as a section on
how to get started.

6https://click.palletsprojects.com/en/7.x/

25

https://click.palletsprojects.com/en/7.x/

Level of support offered

CLI Documentation Examples Community Support

Click Yes Yes No

Table 13: Level of support offered on CLI’s website

Longevity
Since it’s first release on May 24th 2012, Click has been actively maintained with
a steady flow of commits and version updates, as seen in Figure 4 below. This
figure was created using the information regarding Click’s repository, and was
gathered using an online Github comparison tool . Furthermore, the most recent 7

commit was 9 days ago shows that the project is still actively maintained.

Figure 4: General health of the Click project repository

7https://bayne.github.io/github-compare/#!/

26

https://bayne.github.io/github-compare/#!/

3.3.4 Cement 8

Introduction
Cement is a standard and feature-full framework for both simple and complex
command line applications. This flexibility is demonstrated in the large number
of functionalities associated with the framework. Moreover, due to the flexibility
of Cement, it provides a wide range of use cases and as such serves a wide variety
of users. Click was initially released in Dec. 2009, and the current stable version
of Click is 3.0.5.

Analysis Methods
In order to accurately capture the metrics used to compare our candidates,
Cement was analyzed using the following methods for each factor:

● Usability : Examine the design limitations of Cement.
● Level of Support Offered: Identify the available support on Cement’s

website that can be used to assist in building the CLI.
● Longevity : Identify the amount of time that Cement has been available as

a framework and how actively maintained its codebase is.

Results
Usability
The goal of Cement is to provide the functionalities needed to implement a CLI
ranging from simple to complicated. As such, it offers a variety of
functionalities such as:

● Temple handler for rendering content/file templates
● Log handler for logging output to console or file
● Cache handler for for improved performance through caching

In total, Cement offers 10 different handlers for processing and output various
types of data. Overall, Cement provides all the basic functionalities one would
expect to find a CLI package, along with additional advanced functionalities.

8https://docs.builtoncement.com/

27

https://docs.builtoncement.com/

Level of Support Offered
Cement’s website has support, but it is limited to documentation and the
examples within its documentation. Though the support may seem to be limited
in quantity, as seen in Table 14 below, the quality of the documentation is
extensive. Documentation about Cement encompasses all of Cement’s
functionality, and includes sections for beginners so that they can ease into the
framework.

Level of support offered

CLI Documentation Examples Community Support

Click Yes Yes No

Table 14: Level of support offered on Cement’s website

Longevity
Since it’s first release on Dec. 4th 2009, Cement has a steady flow of commits,
but lacks the in regard to the number of version updates, contributors and pull
requests, as seen in Figure 5 below. Furthermore, the most recent commit was 4
months ago, which shows that the project is still maintained, but not at an
exceptionally high rate.

28

Figure 5: General health of the Cement project repository

3.3.5 Summary
After performing an analysis on both the Click package and the Cement
framework, we concluded the alternative that we are going to use to act as the
interface with the HMC API will be Click. The level of support offered for Click
and Cement is similar, as shown in Table 15 below. Both alternatives provide
extensive documentation in regard to the implementation of the various
functionalities that each alternative has to offer.

However, each alternative differs in usability and longevity. Cement offers a
larger number of functionalities than Click in the way of advanced
customizability that cannot be achieved with Click. Conversely, Click offers a
much higher level of longevity than Click, ensuring that it can be used in future
iterations of the project and will remain stable. While Cement offers a higher
level of usability, the additional functionalities that it provides are not required
in this project.

29

Candidate Feasibility

Candidate Usability Level of support offered Longevity

Click Medium Medium High

Cement High Medium Low

Table 15: Feasibility of each candidate and how they compare to each other

Additionally, a possible stretch goal for this project would be to implement
support for the HMC API directly into the GUI of the project. However, further
research would need to be done before a design decision was concluded on this
subject.

3.4 Graphical User Interface
3.4.1 Introduction to Graphical User Interface
Currently our clients’ software does not have a GUI, and they must use a
command line to run the software. Our clients asked that they would like our
team to build them a GUI that uses their existing code base to improve
efficiency. This existing code base is built in C/C++, so we have decided to use a
Python framework to build our GUI.

3.4.2 Factors
For the implementation for the Graphical User Interface for the Forward Model
there are three main factors to consider, the first being compatible with C/C++
due to the Forward Model being built with these programming languages. The
second factor that we must consider is the ability to use this software anywhere
at anytime, with or without an internet connection. The last factor that we must
consider is our familiarity with the possible framework for the Graphical User
Interface.

30

3.4.3 Flask
Introduction
Flask is a Python microframework that is used to create web based software as
well as hybrid applications that run on both the internet and locally on a device.
It is often used to create websites due to its lack of dependency on other libraries.

Analysis Methods
In order to accurately capture the metrics used to compare our candidates for
the Graphical User Interface, we analyzed each factor using the following
methods:

● Compatibility : Are the methods used to implement a graphical user
interface compatible with the current code base?

● Usability : Is this framework usable when there is no internet connection?
● Familiarity : Our team will rank (0-5) how familiar they are with the

framework.

Analysis Results
Compatibility
Flask is compatible with C/C++ with the use of Cython and will be able to call the
functions from the forward model.

Usability
Due to Flask being web-based, it will be able to be used to its full functionality
when it has an internet connection. When used offline there will be problems
that will not allow us to use the graphical user interface fully.

Familiarity
Our team has a good understanding of Python, and the table below lists our
understanding of the Flask framework.

31

Familiarity with Flask

Team member Familiarity (0-5)

Batai Finley 1

Bradley Kukuk 5

Matthew Amato-Yarbrough 1

Jessica Smith 3

John Jacobelli 1

Average: 2.2

Table 16: Familiarity with Flask for each team member

3.4.4 Django
Introduction
Django is a web-based framework that is used to create websites, and hybrid
applications using Python. It has libraries that allow it to create and manage
data storage, and is used primarily for data manipulation while using Python.

Analysis Methods
In order to accurately capture the metrics used to compare our candidates for
the Graphical User Interface, we analyzed each factor using the following
methods:

● Compatibility : Are the methods used to implement a graphical user
interface compatible with the current code base?

● Usability : Is this framework usable when there is no internet connection?
● Familiarity : Our team will rank (0-5) how familiar they are with the

framework.

Results
Compatibility
Django is compatible with C/C++ with the use of Cython and will be able to call
the functions from the forward model.

32

Usability
Due to Django being web-based, it will be able to be used to its full functionality
when it has an internet connection. When used offline there will be problems
that will not allow us to use the graphical user interface fully.

Familiarity
Our team has a good understanding of Python, and the table below lists our
understanding of the Django framework.

Familiarity with Django

Team member Familiarity (0-5)

Batai Finley 1

Bradley Kukuk 5

Matthew Amato-Yarbrough 1

Jessica Smith 2

John Jacobelli 1

Average: 2

Table 17: Familiarity with Django for each team member

3.4.5 Kivy
Introduction
Kivy is a framework used to create mobile applications and other multitouch
application software with a natural user interface. It is mostly used to create
stationary software for desktops as well as hybrid applications.

33

Analysis Methods
In order to accurately capture the metrics used to compare our candidates for
the Graphical User Interface, we analyzed each factor using the following
methods:

● Compatibility : Are the methods used to implement a graphical user
interface compatible with the current code base?

● Usability : Is this framework usable when there is no internet connection?
● Familiarity : Our team will rank (0-5) how familiar they are with the

framework.

Results
Compatibility
Kivy is compatible with C/C++ with the use of Cython and will be able to call the
functions from the forward model.

Usability
Kivy built software is able to be run anywhere and at any time. Its functionality
will not suffer from running offline.

Familiarity
Our team has a good understanding of Python, and the table below lists our
understanding of the Kivy framework.

34

Familiarity with Kivy

Team member Familiarity (0-5)

Batai Finley 1

Bradley Kukuk 5

Matthew Amato-Yarbrough 2

Jessica Smith 3

John Jacobelli 3

Average: 2.8

Table 18: Familiarity with Kivy for each team member

3.4.6 Summary
All three candidates prove feasible in terms of usability, compatibility, and
familiarity. Due to all candidates being Python based, implementation using any
of these three frameworks will work. Due to Django and Flask being web based,
we believe that Kivy is the best candidate due to its offline capabilities. This is
beneficial for the client being able to use the software anywhere at any time, as
well as Kivy being the framework that the team is most familiar with.

Candidate Feasibility

Candidate C/C++
Compatible

Usability Offline Familiarity
(Average)

Flask Yes No 2.2

Django Yes No 2.0

Kivy Yes Yes 2.8

Table 19: Feasibility of each candidate and how they compare to each other

35

3.5 Video Generator
3.5.1 Introduction to Video Generator
Our clients want to make the process of generating videos from their images
more streamlined. Currently, the program will create images of the model, but
does not produce a video. Our clients would like to generate a video of the images
that the model would produce, which would be done when the program is run.
This would be done using an image processing and management toolkit. We
were interested in using a language such as Python to write the generator in,
which would then be wrapped to work with the API.

The main issue for our client is the extra time it takes to convert images
rendered by the program into a video. Our clients wish to expedite this process
by having the program create a video of the images when it is run. This would
replace the need to compile the images into a video externally. The two toolkits
that we explore below are FFMPEG and OpenCV.

3.5.2 Factors
The main factors we examined for the implementation of the video generator
were code efficiency, accessible and extensive documentation, and whether the
tool was GUI or command line based. The factors are presented in order of most
importance to least importance.

Code Efficiency
Our team was heavily focused at how efficient and simple the code for a given
tool was. Since video generation is fairly simple, we wanted to be able to utilize
the toolkit without writing extensive code. We looked into how many lines long a
typical image to video program was to measure this.

Documentation
Documentation that explains how to use the toolkit is a key factor for us as well.
Being able to use resources that can guide us through the process of creating the
video generator is extremely helpful, and can be used to assist us if we fail to
understand an aspect of the toolkit. This will be examined by whether a toolkit
has documentation such as whether a wiki exists for the kit.

36

User Interface
The way a user interacts with the toolkit and uses it was important to us. To
gauge the impact of this, we looked at how the user interacts with the toolkit.

3.5.3 OpenCV
Introduction
OpenCV is an open source computer vision and machine learning software
library. The library has more than 2500 optimized algorithms, which includes a
comprehensive set of both classic and state-of-the-art computer vision and
machine learning algorithms. While primarily used for image recognition and
learning algorithms, it can also be used to perform simpler tasks such as video
generation.

Analysis Methods
In order to accurately gather the information that was used to compare our
candidates, OpenCV was examined using the following methods for each factor:

● Code Efficiency: The average amount of coded lines needed to run a
typical image to video program will be looked at.

● Documentation : The documentation of the toolkit will be explored to see
whether it has a wiki, forum, documentation of open source coding, or
tutorials.

● User Interface: We examined the interface style of a tool to see whether it
was GUI based, command line based, or other.

Analysis Results
Code Efficiency
On average, using OpenCV to write a program that will convert images to a video
seems to be about 15-20 lines of code. The toolkit is also primarily used for 9 10 11

other image management functions, and therefore may be more than is
necessary.

9https://medium.com/@iKhushPatel/convert-video-to-images-images-to-video-using-opencv-py
thon-db27a128a481
10https://theailearner.com/2018/10/15/creating-video-from-images-using-opencv-python/
11https://stackoverflow.com/questions/44947505/how-to-make-a-movie-out-of-images-in-pyth
on/44948030

37

https://medium.com/@iKhushPatel/convert-video-to-images-images-to-video-using-opencv-python-db27a128a481
https://medium.com/@iKhushPatel/convert-video-to-images-images-to-video-using-opencv-python-db27a128a481
https://theailearner.com/2018/10/15/creating-video-from-images-using-opencv-python/
https://stackoverflow.com/questions/44947505/how-to-make-a-movie-out-of-images-in-python/44948030
https://stackoverflow.com/questions/44947505/how-to-make-a-movie-out-of-images-in-python/44948030

Documentation
There is extensive documentation for this toolkit. This comprises everything that
was stated in the Analysis Methods section, which includes a wiki, forum,
documentation of open source coding, or tutorials . This would be beneficial to 12

the team if help was needed.

User Interface
OpenCV can be used within Python, which means that the toolkit is GUI
accessible.

3.5.4 FFMPEG
Introduction
FFmpeg is a leading multimedia framework that is able to decode, encode, play,
and manipulate almost every form of media that has been created. It supports
the formats that are very old and often unused, as well as formats that are
current. As it is a media toolkit, it fits perfectly into the role which we would use
it for.

Analysis Methods
In order to gather the information that was used to compare our candidates,
FFMPEG was considered with the following methods for each factor:

● Code Efficiency: The average amount of coded lines needed to run a
typical image to video program will be viewed.

● Documentation : The documentation of the toolkit will be explored to see
whether it has a wiki, forum, documentation of open source coding, or
tutorials.

● User Interface: We examined the interface style of a tool to see whether it
was GUI based, command line based, or other.

12https://opencv.org/

38

https://opencv.org/

Analysis Results
Code Efficiency
On average, FFMPEG takes about 1-2 lines of parameters to convert a series of
images into a video 7 . This toolkit is also fairly lightweight as it does not deal 13 14

with much besides multimedia manipulation.

Documentation
There is extensive documentation for this toolkit. Everything that was stated in
the Analysis Methods section is included besides tutorials, which means there is
a wiki, forum, and documentation of open source coding . This would be 15

beneficial to the team if help was needed.

User Interface
FFMPEG is primarily a command line based framework. Though, it can be used
within Python which means that it can potentially have a GUI.

3.5.5 Summary
While OpenCV can do more than FFMPEG, FFMPEG is more lightweight than
OpenCV in terms of code. Less lines of code are required to perform the same
task, and the simplicity makes FFMPEG more desirable. For the language, we
considered Python because of the use of it throughout the rest of our project.
There are examples of using FFMPEG within Python despite it being a command
line based tool7.

We believe that FFMPEG would be the best image processing and management
toolkit due to its simplicity. As they can both be called from within a language
(primarily Python, which will be our focus for the video generator language),
FFMPEG seems to be the best option. Using FFMPEG over OpenCV will save time
due to less lines of code needing to be written, and being less complex overall.
FFMPEG performs the video conversion task as well as OpenCV, and will be able
to satisfy our clients’ needs. This is reflected upon in the table below.

13https://hamelot.io/visualization/using-ffmpeg-to-convert-a-set-of-images-into-a-video/
14https://stackoverflow.com/questions/24961127/how-to-create-a-video-from-images-with-ffm
peg
15https://ffmpeg.org/

39

https://hamelot.io/visualization/using-ffmpeg-to-convert-a-set-of-images-into-a-video/
https://stackoverflow.com/questions/24961127/how-to-create-a-video-from-images-with-ffmpeg
https://stackoverflow.com/questions/24961127/how-to-create-a-video-from-images-with-ffmpeg
https://ffmpeg.org/

Candidate Feasibility

Tool Code efficiency Documentation Interface type

FFMPEG 1-2 lines to
convert images
to video

Wiki, forum, open
source coding, and
tutorials

Command line, but can be
used in Python

OpenCV 15-20 lines to
convert images
to video

Wiki, forum, and
open source coding

GUI, can be implemented in
various languages, such as
C/C++/Python

Table 20: Feasibility of each candidate and how they compare to each other

4. Technology Integration
4.1.1 Current Integration Issues
One of the problems we face is that our implementation has no GUI for the
forward model. This an issue because a parameter does not have a label,
meaning that it is unknown which variable it references without prior
knowledge. Without knowing which parameter references which variable, data
could be easily inputted incorrectly. This incorrect input could skew data, which
would be less likely to occur if parameters were entered into a UI. This is why we
plan to integrate our own UI via the Python Framework Kivy.

Moreover, we plan to integrate a Hamiltonian MCMC algorithm which can
narrow down input parameters to more accurately represent observed data. The
integration challenge here is determining how the HMC API will interact with
the forward model. Following the workflow in the introduction of Section 3.2.1,
we can see that the output of the HMC algorithm will need to be input into the
forward model in order to create a model with a light curve similar to that of the
observed light curve. This is an issue with the current iteration of the project
since it does not have a GUI. However, with the implementation of a UI in the
form of Kivy, it will be notably easier to send the data from the HMC algorithm to
the forward model.

40

4.1.2 Future Integration Issues
We must also consider future integration for our program. The method used to
implement the GPU may change for the projected iteration. If our clients would
like to streamline GPU processes, integrating a different parallel framework
would depend significantly on the clients’ GPUs.

In addition, future integration problems may occur with differences in the
user’s hardware. If the program is running on different configurations of
hardware, we will have to check compute capability of devices, driver versions,
and a number of other parameters that may cause problems. Because of this, we
have decided to not include hardware optimization in our initial solution. If we
find that we have additional time and the clients are interested, we may attempt
to implement some of these types of optimizations near the end of the project.

With the problem of integration addressed, we can anticipate future problems
with added technologies. We can now make a conclusion about the feasibility of
the methods and solutions for improving our program that models binary
systems.

5. Conclusion
After researching our design decisions, we have a thorough comprehension of
our expectations. Since we have solidified our project’s tasks, we believe that our
expectations can be realistically completed within our time constraints. In the
table below, we have outlined our challenges, solutions, and confidence level
that the solution will work as expected.

41

Challenges and Solutions

Technical Challenge Solution Confidence

Implementing Triaxial
Ellipsoid/GPU

Triaxial Ellipsoids High

HMC Algorithm API Pymc3 Medium

HMC API CLI Click Medium

GUI Framework Kivy High

Video Generator FFMPEG High

Table 21: Our challenges and solution briefly outlined

We decided that attempting the GPU problem would not be feasible for the
amount of time we have. Therefore, we will be moving forward with adding the
triaxial ellipsoid shape to the simulator and have full confidence that we can
implement it. In addition, we will integrate the Pymc3 API to handle the HMC
algorithm and the Click package to handle the HMC API CLI. Since our clients
expressed how a GUI would ease their intense computations, we look forward to
providing them a user-friendly interface. We are also eager to provide the
function of a video processor to the GUI so our clients can generate videos based
on the images that the model creates.

Team Andromeda is prepared to work with our clients to create a full-bodied
solution. To ensure a successful outcome, we recognize that we will need to dive
deep into linear algebra, Bayesian statistics, and unfamiliar frameworks.

Space has piqued the curiosity of humans since the first twinkle of light. Though
we learn more about it everyday, it is still full of mystery and the unknown.
Space exploration is an exciting and crucial step for humans to find the origins
of the universe. The fact that our project will make an impact in gathering vital
information about space thrills us. We are honored to be entrusted with such an
important project and are confident that we have the abilities to overcome the
challenges we face.

42

